

ISSN: 2186-8476, ISSN: 2186-8468 Print

Vol. 2 No. 2, June 2013

(株株株株) リナ＆ルナインターナショナルリナ＆ルナインターナショナルリナ＆ルナインターナショナルリナ＆ルナインターナショナル

小山市、日本小山市、日本小山市、日本小山市、日本.

www. leena-luna.co.jp

P a g e | 107

A STUDY OF REQUIREMENTS VALIDATION WITH UML

Pin Ng

Hong Kong Community College,

 Hong Kong Polytechnic University, HONGKONG.

ccpng@hkcc-polyu.edu.hk

ABSTRACT

The major concern of requirements validation is to evaluate software system at the

end of the software development process to ensure compliance with the software

requirements. Among the various bases for specifying software requirements,

graphical notations are the most suitable means to be used in requirements
validation. Many practitioners and researchers have advocated model-based testing

for improving the efficiency and effectiveness of test cases generation. The behavior

models in Unified Modeling Language (UML) are good candidates for such

purposes; in particular, UML state machine model is a useful basis for deriving test

scenarios. By traversing the state machine model, feasible transition sequences can

be obtained. Each feasible transition sequence represents an operational scenario

that describes the desired behavior of the target system. Therefore the feasible

transition sequences derived from the state machine model can form a set of test

scenarios for requirements validation purposes.

Keywords: Requirements validation, Model-based testing, UML

INTRODUCTION

All engineering projects begin with the definition of requirements. The requirements
specification acts as an important contract agreement [18]. It also forms the basis of the

design and implementation of the target system. In the context of software development,
requirements engineering [15] is one of the early and important phases in the software

development life cycle. Requirements engineering consists of several interrelated activities
[21][22], including requirements elicitation, requirements specification, requirements

validation, and requirements management. In particular, requirements validation [26] plays an

important role in both the initial development and the ongoing maintenance of a software

system with evolving requirements. The major concern of requirements validation is to

evaluate software system at the end of the software development process to ensure

compliance with the software requirements [6].

Figure 1 shows a typical requirements validation process. With reference to a complete set of

requirements specification, test cases and the associated expected results can be derived.
After the software system has been implemented based on the requirements specification, the

system is tested with the pre-defined test cases. If the running results conform to the expected
results, that demonstrates the system behaves according to the software requirements.

Among the various bases for specifying software requirements [26][7], graphical notations

are the most suitable means to be used in requirements validation. Many practitioners and

researchers [1][25] have advocated model-based testing for improving the efficiency and
effectiveness of test cases generation. Model-based testing is a system testing technique that

derives a suite of test cases from a model representing the behavior of a software system. By
executing the set of model-based test cases, the conformance of the target system to its

specification can be validated.

ISSN: 2186-8476, ISSN: 2186-8468 Print

Vol. 2 No. 2, June 2013

 ASIAN JOURNAL OF NATURAL & APPLIED SCIENCES

www.ajsc.leena-luna.co.jp
 108 | P a g e

Leena and Luna International, Oyama, Japan.

Copyright © 2013

Requirements
specification

2: implements

Test Cases

1: derived from

3: tested with

4: satisfies if
passing the tests

Software

System

Figure 1. Requirements validation process

CURRENT PRACTICES IN REQUIREMENTS VALIDATION

Verification and validation are two closely related concepts in the field of software testing.

Verification answers the question: "Are we building the product right?” whereas validation

answers the question: "Are we building the right product?" The ultimate goal of verification

and validation is to establish confidence that the software system is ‘fit for purpose’ [23]. In

practice, the verification and validation of a typical software development project involve

four stages of testing: unit, integration, system, and acceptance level testing. The four stages

of testing are depicted in form of a V-model [13] as shown in Figure 2. Our research work

focuses on requirements validation, which is about evaluating software system at the end of

the software development process to ensure compliance with the software requirements [6].

Acceptance testing

System testing

Integration testing

Unit testing

Level of Testing

Verification

Validation

System Development

Requirements

specification

High-level design

Detailed design

Coding

Figure 2. The V-model

In relation to the current practices in requirements validation [26] [7], there are some

commonly used bases with which the requirements are specified and the validation test cases

are derived.

� Natural language: Natural language is often used in documenting
software requirements because of flexibility and ease of understanding.

However, natural language may introduce ambiguity because different
stakeholders may have different interpretations of the statements

written in natural language.

ISSN: 2186-8476, ISSN: 2186-8468 Print

Vol. 2 No. 2, June 2013

(株株株株) リナ＆ルナインターナショナルリナ＆ルナインターナショナルリナ＆ルナインターナショナルリナ＆ルナインターナショナル

小山市、日本小山市、日本小山市、日本小山市、日本.

www. leena-luna.co.jp

P a g e | 109

� Design description languages: This approach uses a language style

similar to a programming language but with more abstract features to
specify the requirements [23]. One advantage of using a design

description language for requirements specification is that the
specification can be transformed directly to some programming

languages. However, not all stakeholders are familiar with the specific
design description language so that there may exist some

communication problems.

� Graphical notations: A graphical language, supplemented by text

annotations, can be used to define the software requirements for the

system [23]. Some common examples are: Entity-Relationship

Diagram (ERD), Data Flow Diagram (DFD), and Unified Modeling
Language (UML). The latest version of UML comprises 13 types of

diagrams [20]. The UML diagrams have been widely accepted in the
software development industry [11] for visualizing the requirements

for the ease of communicating requirements among stakeholders.

� Mathematical specification languages: These specifications are
derived based on mathematical expressions, such as the Z notation

[24]. The specifications are very precise and concise. Validation of the
requirements can be achieved through mathematical proofing

mechanisms. However, a major obstacle for adopting mathematical

expressions is that it is difficult for the common users to fully

understand the mathematical specifications of the software

requirements.

Among these bases for specifying software requirements, graphical notations are the most
suitable means to be used in requirements validation and that is why model-based testing

becomes a popular validation technique in the communities of software testing practitioners
and researchers [13]. Model-based testing [1] is a system testing technique that derives a suite

of test cases from a model representing the behavior of a software system. By executing the
set of model-based test cases, the conformance of the target system to its specification can be

validated. The typical activities involved in model-based testing [25] are listed as follows:

(1) System modeling: This step involves the modeling of the software

requirements by using some system models.

(2) Selecting Test Suite: Based on the system models, test cases can be

derived. Test coverage criteria are used for the guiding the selection of

a suite of test cases and determining the adequacy of the test suite.

(3) Executing Test Suite: The implemented target system is executed with
the selected test cases.

(4) Test Review: The running results of executing the target system with

the test cases are checked with the expected results. If the running

results match with the expected results, it implies the behavior of the
target system conforms to the requirements. Otherwise, that implies

there are some faults in the implementation of the target system.
Debugging activities will be carried out if faults are found. The test

cases and the corresponding system model will be useful means for
locating the sources of faults.

ISSN: 2186-8476, ISSN: 2186-8468 Print

Vol. 2 No. 2, June 2013

 ASIAN JOURNAL OF NATURAL & APPLIED SCIENCES

www.ajsc.leena-luna.co.jp
 110 | P a g e

Leena and Luna International, Oyama, Japan.

Copyright © 2013

Testing with model-based specifications has several advantages. Firstly, the specifications in

form of a model can be used as a basis for checking the running results. This will reduce the
effort of deriving the testing oracles which are essential in deciding whether the running

results conform to the expected system behavior. Secondly, the process of deriving the test

cases from the model-based specification can help the testing team to discover and resolve

the problems in the specification at the early stage of software development. Thirdly, the test

scenarios derived based on the model-based specification are implementation independent.

That means the test cases are applicable to test any implementations of the software system

with different programming languages or software components.

REQUIREMENTS VALIDATION WITH UML

A system model gives an abstract view of a system, highlighting certain important aspects of

its design [11]. A ‘good’ system model can act a driving force for the requirements
engineering process [26] by:

(1) System models provide precise and concise descriptions of important

aspects of a system that may be too complex to be handled as a whole;

(2) System models provide a valuable means of communication between

the members of the development team, and also between the development

team and the users.

As software development often involves collaborative work among multiple developers,

having a standard modeling language is crucial for a successful software development
project. Since the early 1990s, there have been a number of different object-oriented analysis

and design methods. Unified Modeling Language (UML) was evolved from the work of
Grady Booch, James Rumbaugh, and Ivar Jacobson [20]. It has gone through a

standardization process with the OMG (Object Management Group) and become an OMG

standard [17] is now a main stream in software development [10] and it provides a standard

way for developing system blueprints [19]. The UML models address a number of design

issues from different perspectives through a variety of diagrams [11]. In the latest version of

UML, it comprises 13 types of diagrams as shown in Figure 3.

Behavioral

models

Structural
models

Object

Diagram

Deployment

Diagram

Package

Diagram

Interaction

Diagram

Sequence

Diagram

Communication

Diagram

Interaction

Overview
Diagram

Timing

Diagram

Use Case

Diagram

State
Machine

Diagram

Activity

Diagram

Class

Diagram

Component

Diagram

Composite
Structure

Diagram

UML 2.0

Figure 3. UML 2.0 diagrams

These diagrams are broadly classified into two main categories: structural models and

behavioral models.

ISSN: 2186-8476, ISSN: 2186-8468 Print

Vol. 2 No. 2, June 2013

(株株株株) リナ＆ルナインターナショナルリナ＆ルナインターナショナルリナ＆ルナインターナショナルリナ＆ルナインターナショナル

小山市、日本小山市、日本小山市、日本小山市、日本.

www. leena-luna.co.jp

P a g e | 111

Structural models are used to model the overall structure of a system and the organization of

the system elements [20]. They include:

� Class diagram describes the static view of a system. It shows a set of

object classes and the relationships among them. Class diagram is an

essential model in modeling object-oriented systems.

� Object diagram represents a snapshot of object instances found in a
class diagram. It shows a set of object instances and their relationships,

and addresses the static view of a system from the perspective of some
typical cases.

� Component diagram models the static implementation view of a

system. It shows the dependencies among a set of system components.

Each system component could be one or more object classes for
implementation.

� Composite structure diagram depicts the internal structure of a class,

component, or use case.

� Deployment diagram represents the static deployment view of a
system’s physical architecture. It shows the configuration of internal

processing units. Deployment diagrams are related to component

diagrams in that each processing unit typically encompasses several

system components.

� Package diagram shows how model elements are organized into

packages and the dependencies among the packages.

Behavioral models describe the interactions among the system elements and their runtime
behaviors [20]. Usually these interactions are modeled in terms of message passing whereas

the run-time behaviors are described through the changes of states and flow of control.
Behavioral models include:

� Use case diagram models a set of use cases, actors and their

relationships. Each use case represents a major service that can be

provided by a system. Use case diagrams are useful in organizing and

modeling the overall functionality of a system.

� Sequence diagram is a kind of interaction diagram. An interaction

diagram represents the dynamic view of a system, and models the

interactions in form of the messages passed among the objects. A

sequence diagram emphasizes on the time ordering of message

passing.

� Communication diagram is also a kind of interaction diagram. It

emphasizes the structural organization of the objects which interact
with each other through message passing.

� State machine diagram models the dynamic behavior of a system in

response to external stimuli. It is particular useful for modeling the

lifetime behavior of a system, or its components, whose states are
triggered by some specific events.

� Activity diagram is considered as a special kind of a state machine

diagram. It addresses the dynamic view of a system, and focuses on the

ISSN: 2186-8476, ISSN: 2186-8468 Print

Vol. 2 No. 2, June 2013

 ASIAN JOURNAL OF NATURAL & APPLIED SCIENCES

www.ajsc.leena-luna.co.jp
 112 | P a g e

Leena and Luna International, Oyama, Japan.

Copyright © 2013

flow of activities within a system. It is useful in modeling flows of

control.
Interaction overview diagram is a hybrid of activity diagram and

sequence diagram for modeling the control flow of a system or

business process.

� Timing diagram depicts the change in state of an object over time in
response to external events.

Among the various UML diagrams, use case diagram, sequence diagram, and state machine

diagram are most widely used in model-based testing [2] [9] [12] [16] at system level,

particularly for deriving test cases for testing the conformance of a system to its functional

requirements.

• Use case diagram represents the high level functionalities provided by
the system to the user. A use case or scenario shows how the system

interacts with actors [4]. An actor may be a user or an external system

with which the target system is communicating. However, since a use

case is not something easily measurable, there is no coverage criterion

defined for use case testing. Therefore, one limitation of using use case

in model-based testing is that it is not possible to determine the test

coverage and thus, it is hard to determine the adequacy of testing.

• Sequence diagram, in general, captures the time dependent sequences

of interactions between objects. Message sequences are used in

sequence diagram to model the interactions [8]. In UML, a message is

a request for a service from one object to another. Each sequence

diagram represents a complete trace of messages during the execution
of a user-level operation. A path of message sequence can form a trace

of system level interaction. Message sequence path coverage is a
coverage criterion for model-based testing with sequence diagram.

With that criterion, for each sequence diagram in the requirements
specification, there exist some test cases that can exercise each

message sequence path at least once. Although sequence diagram is
useful in deriving test scenarios, it only represents a partial view of the

interactions between multiple system objects.

• State machine diagram describes software behaviors with states and
transitions and defines the dynamic behavior of software system (or its

components) in terms of how it responds to external stimuli [8]. The
transition from one state to another is initiated by an event. An event

will cause an action and the system will change to another. State

machine model is especially useful for modeling reactive systems

whose states are triggered by specific events. It is often used for

modeling embedded software [3] and user interface design [5]. Being

the most formalized model in UML, state machine model [16] provides

a natural basis for test case generation. Several coverage criteria have

been proposed for test case selection from state machine model. Some

of the well established criteria include all transitions, full predicates,

and all transition pairs [1].

Nobe and Warner [14] reported their industrial experience at Boeing Commercial

Airplane Group and identified the following major advantages of modeling with state

ISSN: 2186-8476, ISSN: 2186-8468 Print

Vol. 2 No. 2, June 2013

(株株株株) リナ＆ルナインターナショナルリナ＆ルナインターナショナルリナ＆ルナインターナショナルリナ＆ルナインターナショナル

小山市、日本小山市、日本小山市、日本小山市、日本.

www. leena-luna.co.jp

P a g e | 113

machine model:

• State machine model can be readily used by system domain experts to
express and analyze behavioral requirements.

• State machine model allowed designers to simplify the requirements

specification.

• State machine model provided engineers with a means for early
validation of requirements.

• State machine model facilitated clear communication among project

engineers.

These facts exhibit that state machine model is a useful means for requirements analysis,
specification, and validation. Naik and Tripathy [13] defined model-based testing with state

machine-based specification as follows:

Given a state machine model M of the requirements of a system and an implementation IM of

M, model-based testing is to conform that the implementation IM behaves as prescribed by

M.

The basic steps are:

(1) Derive sequences of state transitions from M.

(2) Turn each sequence of state transition into a test sequence.

(3) Test IM with a set of test sequences and observe whether or not IM

possesses the corresponding sequences of state transitions.

(4) The conformance of IM to the requirements can be tested by choosing

enough state transition sequences from M.

In particular, being the most formalized model in UML, state machine model provides a

natural basis for test case generation. By traversing the state machine model, feasible
transition sequences can be obtained. Each feasible transition sequence represents an

operational scenario that describes the desired behavior of the target system. Therefore the
feasible transition sequences derived from the state machine model can form a set of test

scenarios for requirements validation purposes.

CONCLUSION

The UML diagrams have been widely accepted in the software development industry for
visualizing the requirements for the ease of communicating requirements among

stakeholders. The models are used as the blueprints for constructing the software system.
They can also be used as the basis for testing for the conformance of the target system to the

software requirements. UML state machine model is a popular modeling tool for specifying
dynamic perspective of a system and its interactions with the users through sequences of

transitions. Each sequence of transitions derived from the state machine model can form a
scenario which represents a set of situations of common characteristics that might reasonably

occur. The set of feasible transition sequences can serve as test scenarios in requirements

validation.

ISSN: 2186-8476, ISSN: 2186-8468 Print

Vol. 2 No. 2, June 2013

 ASIAN JOURNAL OF NATURAL & APPLIED SCIENCES

www.ajsc.leena-luna.co.jp
 114 | P a g e

Leena and Luna International, Oyama, Japan.

Copyright © 2013

REFERENCES

[1] Binder, R.V. (2000). Testing Object-Oriented Systems-Models, Patterns, and Tools,

Object Technology. Addison-Wesley.

[2] Briand, L. C., Labiche, Y., & Cui, J. (2005). Automated support for deriving test

requirements from UML statecharts. Software and Systems modeling, 4(4), 2005,

pp.399–423.

[3] Broekman, B. & Notenboom, E. (2003). Testing embedded software, Addison-Wesley.

[4] Hass, A. M. J. (2008). Guide to advanced software testing. Boston: Artech House,

2008.

[5] Horrocks, I. (1999). Constructing the user interface with statecharts. Addison-Wesley.

[6] IEEE (2004). Guide to the software engineering body of knowledge (SWEBOK),

Professional Practices Committee, and IEEE Computer Society.

[7] Jones, C. (2010). Software engineering best practices: lessons from successful

projects in the top companies, New York: McGraw-Hill.

[8] Kansomkeat, S., Offutt, J., Abdurazik, A., & Baldini, A. (2008). A Comparative

Evaluation of Tests Generated from Different UML Diagrams. Proceedings of the 9th
ACIS International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD 2008), Phuket Thailand,
August 2008, pp.867–872.

[9] Korel, B., Singh, I., Tahat, L., & Vaysburg, B. (2003). Slicing of state-based models.

Proceedings of International Conference on Software Maintenance, ICSM 2003, 22-

26 September 2003, pp.34–43.

[10] Lange, C. F. J., Chaudron, M. R. V., & Muskens, J. (2006). In practice: UML software

architecture and design description. IEEE Software, 2006, 23(2), pp.40–46.

[11] Medvidovic, N., Rosenblum, D. S., Redmiles, D. F., & Robbins, J. E. (2002).

Modeling software architectures in the Unified Modeling Language. ACM
Transactions on Software Engineering and Methodology (TOSEM), 11(1), January

2002, pp.2–57.

[12] Murthy, P. V. R., Anitha, P. C., Mahesh, M., & Subramanyan, R. (2006). Test ready

UML statechart models. Proceedings of the 2006 international workshop on scenarios

and state machines: models, algorithms, and tools SCESM '06, May 2006, pp.75–81.

[13] Naik, K. & Tripathy, P. (2008). Software testing and quality assurance: theory and
practice. John Wiley & Sons.

[14] Nobe, C. R. & Warner, W. E. (1996). Lessons learned from a trial application of

requirements modeling using statecharts. Proceedings of the Second International

Conference on Requirements Engineering, 15-18 April 1996, pp.86–93.

[15] Nuseibeh, B. & Easterbrook, S. (2000). Requirements engineering: a roadmap.

Proceedings of the International Conference on Software Engineering (ICSE-2000),

pp.35–46.

[16] Offutt, J., Liu, S., Abdurazik, A. & Ammann, P. (2003). Generating Test Data from
State-based Specifications. Software Testing, Verification and Reliability, 13(1), 2003,

pp.25–53.

ISSN: 2186-8476, ISSN: 2186-8468 Print

Vol. 2 No. 2, June 2013

(株株株株) リナ＆ルナインターナショナルリナ＆ルナインターナショナルリナ＆ルナインターナショナルリナ＆ルナインターナショナル

小山市、日本小山市、日本小山市、日本小山市、日本.

www. leena-luna.co.jp

P a g e | 115

[17] OMG. (2005). Unified Modeling Language (UML): Superstructure, version 2.0,

Object Management Group (OMG), http://www.omg.org, 2005-11-08, August, 2005.

[18] Pressman, R. S. (2010). Software Engineering: A Practitioner's Approach, 7th ed.,

McGraw-Hill.

[19] Priestley, M. (2003). Practical object-oriented design with UML, 2nd ed. McGraw-

Hill.

[20] Rumbaugh, J., Jacobson, I. & Booch G. (2005). The Unified Modeling Language

Reference Manual, 2nd ed., Addison-Wesley.

[21] Sawyer, P. & Kotonya, G. (2004). Software Requirements. Guide to the software

engineering body of knowledge (SWEBOK), Professional Practices Committee, and

IEEE.

[22] SEI (1990). Software Requirements SEI Curriculum Module SEI-CM-19-1.2,
Software Engineering Institute, Carnegie Mellon University, January 1990.

[23] Sommerville, I. (2011). Software engineering, 9th ed., Pearson/Addison-Wesley.

[24] Spivey, J. M. (1992). The Z notation: a reference manual, 2nd ed., Prentice Hall.

[25] Utting, M. & Legeard, B. (2007). Practical Model-Based Testing: A Tools Approach,

Morgan Kaufmann.

[26] Van Lamsweerde, A. (2009). Requirements engineering: from system goals to UML

models to software specifications, John Wiley.

